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Abstract. The concept of a tight set of points of a generalised quadrangle was introduced
by S. E. Payne in 1987, and that of an m-ovoid of a generalised quadrangle was introduced by
J. A. Thas in 1989, and we unify these two concepts by defining intriguing sets of points. We
prove that every intriguing set of points in a generalised quadrangle is an m-ovoid or a tight
set, and we state an intersection result concerning these objects. In the classical generalised
quadrangles, we construct new m-ovoids and tight sets. In particular, we construct m-ovoids
of W (3, q), q odd, for all even m; we construct (q + 1)/2-ovoids of W (3, q) for q odd; and we
give a lower bound on m for m-ovoids of H(4, q2).

1. Introduction

This paper is concerned with certain sets of points and lines of finite generalised quadrangles
which are extremal in some sense. A generalised quadrangle of order (s, t) is an incidence
structure of points and lines with the properties that every two points are incident with at
most one line, every point is incident with t + 1 lines, every line is incident with s + 1 points,
and for any point P and line ` that are not incident, there is a unique point on ` collinear with
P (this is sometimes known as the “GQ axiom”). If s = t we say the generalised quadrangle
has order s. The standard reference is [14], however, we will not necessarily be using the same
notation as that found there.

The examples of generalised quadrangles that play the most prominent role in this paper are
the so-called classical generalised quadrangles W (3, q), Q(4, q), H(3, q2), Q−(5, q) and H(4, q2).
The first of these is the incidence structure of all totally isotropic points and totally isotropic
lines with respect to a null polarity in PG(3, q), and is a generalised quadrangle of order q.
The point/line dual of W (3, q) is Q(4, q), the parabolic quadric of PG(4, q), and is therefore a
generalised quadrangle of order q (see [14, 3.2.1]). The incidence structure of all points and
lines of a non-singular Hermitian variety in PG(3, q2), which forms the generalised quadrangle
H(3, q2) of order (q2, q), has as its point/line dual the elliptic quadric Q−(5, q) in PG(5, q),
which is a generalised quadrangle of order (q, q2) (see [14, 3.2.3]). The remaining classical
generalised quadrangle, H(4, q2), is the incidence structure of all points and lines of a non-
singular Hermitian variety in PG(4, q2), and is of order (q2, q3) (see [14, 3.1.1]).

The concept of a tight set of a generalised quadrangle was introduced by Payne in [15].
There, a set of points T of a generalised quadrangle of order (s, t) is tight if that on average,
each point P of T is collinear with the maximum possible number of points of T . If this
maximum possible number is s + i, then we say the set T is i-tight. See Section 2 for an
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alternative definition of an i-tight set. It is not difficult to show that a 1-tight set is the set of
points on a line, and Payne essentially determined the 2-tight sets in [15].

In Thas’ paper [20], m-ovoids of generalised quadrangles were introduced as sets of points
meeting every line in exactly m points. The dual concept is an m-cover, that is, a set of
lines such that every point lies on exactly m lines of the set. These configurations generalise
the older and more widely studied objects of ovoids and spreads (which are 1-ovoids and 1-
covers respectively). The complement of an ovoid in a generalised quadrangle of order (s, t) is
an s-ovoid, and apart from ovoids and complements of ovoids, there are few constructions of
m-ovoids known.

A set of type (a, b) of PG(d, q) is a set of points P such that each hyperplane intersects P
in either a or b points. Such a point-set gives rise to a strongly regular graph and a two-weight
code (see [5]). We observe in this paper, that in certain classical generalised quadrangles, m-
ovoids and i-tight sets give rise to such sets of type (a, b) (see Corollaries 4.6, 4.7, and 4.8).
Hence the constructions of m-ovoids and i-tight sets of classical generalised quadrangles that
we provide in this paper, give rise to strongly regular graphs and two-weight codes.

In the following two sections, we give brief accounts of the theory of tight sets and m-ovoids.
In Section 4, we unify the notions of tight sets and m-ovoids in the context of intriguing sets
of points, and prove some general combinatorial results of these objects. We show that every
intriguing set of points in a generalised quadrangle is an m-ovoid or an i-tight set. We also show
that in any generalised quadrangle, an m-ovoid intersects an i-tight set in mi points, and we
prove a partial converse of this theorem. In the classical generalised quadrangles, we construct
new m-ovoids and new tight sets. In Section 5, we construct an infinite family of m-ovoids of
W (3, q), q odd, for all even m. We then follow this construction in Section 6 with a construction
of (q + 1)/2-ovoids of W (3, q) for q odd. By duality, these m-ovoids are hemisystems (of lines)
of Q(4, q). In Section 7, we show that H(4, q2) does not have m-ovoids for m ≤ √

q. Finally,
we provide some other examples of intriguing sets and conclude with some open problems.

2. Tight Sets

The concept of a tight set can be made more explicit with the following definition. A set
of points T of a generalised quadrangle of order (s, t) is an i-tight set if for every point P in
T , there are s + i points of T collinear with P , and for every point P not in T , there are i
points of T collinear with P . We say that a set of points is tight if it is i-tight for some i. By
[15, II.1], the size of an i-tight set of a generalised quadrangle of order (s, t) is i(s + 1). Tight
sets exhibit the following nice properties, which we recast and summarise from Payne’s original
paper.

Lemma 2.1 (S. E. Payne 1987, [15, II.2.]). Let S be a generalised quadrangle of order (s, t).
Let A and B be i-tight and j-tight sets of points of S, respectively. Then:

(a) if A ⊆ B, then B\A is (j − i)-tight;
(b) if A and B are disjoint, then A ∪ B is (i + j)-tight;
(c) the set of points of S form an (st + 1)-tight set, and the empty set is 0-tight.

�

It is worth noting that Q(4, q) is a (q2 + 1)-tight set of Q−(5, q) and that H(3, q2) is a
(q3 + 1)-tight set of H(4, q2).

3. m-ovoids

As for tight sets, we can consider m-ovoids in terms of the number of points of the set
collinear with any given point of the generalised quadrangle. Thus an m-ovoid of a generalised
quadrangle of order (s, t) is a set of points O such that for every point P in O, there are
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(t + 1)(m − 1) + 1 points of O collinear with P , and for every point P not in O, there are
(t+1)m points of O collinear with P . By [20, Lemma 1], the size of an m-ovoid of a generalised
quadrangle of order (s, t) is m(st + 1). The following properties, analogous to those given in
Lemma 2.1 for tight sets, are straightforward consequences of the definition of an m-ovoid.

Lemma 3.1. Let S be a generalised quadrangle of order (s, t). Let A and B be an m-ovoid
and n-ovoid of S respectively. Then:

(a) if A ⊆ B, then B\A is an (n−m)-ovoid;
(b) if A and B are disjoint, then A ∪ B is an (n + m)-ovoid;
(c) the set of points of S form an (s + 1)-ovoid, and the empty set is a 0-ovoid.

�

As mentioned in the introduction, apart from ovoids and complements of ovoids, there
are few constructions of m-ovoids known. For q even, K. Drudge [8] constructed a 2-cover
of W (3, q), and so a 2-ovoid of Q(4, q). Recently, A. Cossidente and the third author [7]
constructed an m-ovoid of H(3, 25) for m ∈ {5, 6, 20, 21} and a (q + 1)/2-ovoid of Q−(5, q) for
all odd q. By intersection, the latter gives a (q + 1)/2-ovoid of Q(4, q), q odd. It is well-known
that there are no 1-ovoids of W (3, q) for q odd (see [14] or [19]).

4. Combinatorics of intriguing sets

A subset I of points of a generalised quadrangle is intriguing if over all points P in I, the
number of points in I collinear with P is constant, and over all points P not in I, the number of
points in I collinear with P is also constant. Necessarily, these two constants must be different.
Throughout this paper, we will use the notation B⊥ to denote the set of points collinear with
each point in B (we write P⊥ for {P}⊥). Hence I is intriguing if

|P⊥ ∩ I| =

{
h1 if P ∈ I,

h2 otherwise,

for some constants h1 and h2. Now we saw in the preceding sections that m-ovoids and i-tight
sets are intriguing. The converse is also true.

Theorem 4.1. An intriguing set of a generalised quadrangle is an m-ovoid or is an i-tight
set.

Proof. Let I be an intriguing set of a generalised quadrangle of order (s, t), let ` be a line
and let m be the number of points on ` that are in I. Since I is intriguing, there exist constants
h1 and h2 such that |P⊥ ∩ I| = h1 for all P ∈ I, and |P⊥ ∩ I| = h2 for all P /∈ I. There are
s + 1−m points on ` that are not in I, and for each of these points P , there are h2−m points
of I not on ` that are collinear with P . So there are (s + 1−m)(h2 −m) points of I not on `
collinear with points of `\(`∩I) (by the “GQ axiom”). On the other hand, there are m points
on ` that are in I, and so there are m(h1 − m) points of I not on ` that are collinear with
points of ` ∩ I. So |I| −m is equal to (s + 1−m)(h2 −m) + m(h1 −m) and hence

|I| − (s + 1)h2 = m(h1 − h2 − s).

If h1 − h2 = s, then |I| = (s + 1)h2 and I is h2-tight. If h1 − h2 6= s, then

m = |` ∩ I| = |I| − (s + 1)h2

h1 − h2 − s

for all lines `, and so I is an m-ovoid. �



4 JOHN BAMBERG, MASKA LAW AND TIM PENTTILA

Corollary 4.2. Let I be an intriguing set of points of a generalised quadrangle S. Let h1

be the number of points of I collinear with a point of I, and let h2 be the number of points of I
collinear with a point not in I. Then I is an m-ovoid if h1 < h2, and is a tight set otherwise.

�

Theorem 4.3. Let S be a generalised quadrangle, let O be an m-ovoid of S and let T be
an i-tight set of S. Then O and T intersect in mi points.

Proof. Let P be the point-set of a generalised quadrangle S of order (s, t), and let A be
the adjacency matrix of the collinearity graph of S (with the loops removed). Consider A as
a linear map on the vector space of functions RP ; i.e., A maps a function ϕ to the function
P 7→

∑
{ϕ(Q) : Q ∼ P, Q 6= P}. For all subsets B of P , let χB denote the characteristic

function on B:

χB(P ) =

{
1 if P ∈ B,

0 otherwise.

Note that it is the inner product χO · χT that we wish to calculate, as this is precisely the size
of the intersection of O and T . Now by the definition of an m-ovoid, we have

AχO = −(t + 1)χO + (t + 1)mη

where η is the constant function with value 1. Similarly, by the definition of an i-tight set, we
have

AχT = (s− 1)χT + iη.

Since the valency of each point of the collinearity graph of S is s(t + 1), we have

Aη = s(t + 1)η.

Now

A

(
χO −

m

s + 1
η

)
= −(t + 1)χO + (t + 1)mη − ms(t + 1)

s + 1
η = −(t + 1)

(
χO −

m

s + 1
η

)
and

A

(
χT −

i

st + 1
η

)
= (s− 1)χT + iη − is(t + 1)

st + 1
η = (s− 1)

(
χT −

i

st + 1
η

)
.

Therefore χO− m
s+1

η and χT − i
st+1

η are eigenvectors of A, with different eigenvalues, and hence
they must be orthogonal. So(

χO −
m

s + 1
η

)
·
(

χT −
i

st + 1
η

)
= 0.

By rearranging we see that

χO · χT = mi

(
η · χT

(s + 1)i
− η · η

(s + 1)(st + 1)
+

χO · η
(st + 1)m

)
.

We can count in the generalised quadrangle S and obtain

η · χT = |T | = (s + 1)i

χO · η = |O| = (st + 1)m

η · η = |P| = (s + 1)(st + 1).

So |O ∩ T | = χO · χT = mi and hence O and T intersect in mi points. �
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We now state some interesting corollaries of this result, some of which offer different proofs
of old results. The first of these concerns regular pairs of points of a generalised quadrangle. In
a generalised quadrangle of order (s, t), a hyperbolic line is a set of points of the form {P, Q}⊥⊥
for some pair of non-collinear points P and Q. Every hyperbolic line has at most t + 1 points
(by the “GQ axiom”), and if equality occurs, then we say that the pair (P, Q) defining the
hyperbolic line is a regular pair (see [14, pp. 4]). By [14, 1.6.1], every pair of non-collinear
points of W (3, q) is a regular pair.

Corollary 4.4 (S. E. Payne and J. A. Thas 1984, [14, 1.8.4]). Let S be a classical gen-
eralised quadrangle of order s, with s even, let O be an ovoid of S, and suppose there is a
regular pair of non-collinear points (P, Q). Then |O ∩ {P, Q}⊥⊥|, |O ∩ {P, Q}⊥| ∈ {0, 2} and
|O ∩ ({P, Q}⊥ ∪ {P, Q}⊥⊥)| = 2.

Proof. This follows from the fact due to Payne in [15] that {P, Q}⊥ ∪{P, Q}⊥⊥ is 2-tight
(the division |O∩{P, Q}⊥⊥| = |O∩{P, Q}⊥| = 1 being impossible since every point of {P, Q}⊥
is collinear with every point of {P, Q}⊥⊥, and so some line of S then contains 2 points of O). �

Corollary 4.5 (J. A. Thas 1972, [18]). If O is an ovoid of W (3, q), where q is even, then
O is an ovoid of PG(3, q).

Proof. First note that every line of PG(3, q) is either a line of W (3, q), and hence meets
O in a single point, or is a hyperbolic line of W (3, q). By Corollary 4.4, every hyperbolic line
meets O in 0 or 2 points. Therefore, O is a cap of PG(3, q), and hence an ovoid, as it has size
q2 + 1. �

Recall from the introduction the notion of a set of type (a, b) with respect to hyperplanes
and their connections to strongly regular graphs and two-weight codes. Note that an m-ovoid
of W (3, q) is a set of m(q2 + 1) points of PG(3, q) of type (m(q + 1)− q, m(q + 1)) with respect
to planes. We now observe similar results for other classical generalised quadrangles.

Corollary 4.6. An m-ovoid O of Q−(5, q) gives rise to a set of points of PG(5, q) of type
(m(q2 + 1)− q2, m(q2 + 1)) with respect to hyperplanes.

Proof. For a point P of Q−(5, q), |P⊥ ∩ O| is m(q2 + 1) − q2 if P ∈ O and m(q2 + 1) if
P /∈ O. For a point P of PG(5, q) not of Q−(5, q), P⊥ ∩ Q−(5, q) is a subquadrangle Q(4, q),
and so is (q2 + 1)-tight. Hence |P⊥ ∩ O| = m(q2 + 1). �

Corollary 4.7. An m-ovoid O of H(4, q2) gives rise to a set of points of PG(4, q2) of type
(m(q3 + 1)− q3, m(q3 + 1)) with respect to hyperplanes.

Proof. For a point P of H(4, q2), |P⊥ ∩ O| is m(q3 + 1) − q3 if P ∈ O and m(q3 + 1) if
P /∈ O. For a point P of PG(4, q2) not of H(4, q2), P⊥ ∩H(4, q2) is a subquadrangle H(3, q2),
and so is (q3 + 1)-tight. Hence |P⊥ ∩ O| = m(q3 + 1). �

Corollary 4.8. An i-tight set T of H(3, q2) gives rise to a set of points of PG(3, q2) of
type (i, i + q2) with respect to planes.

Proof. For a point P of H(3, q2), |P⊥ ∩ T | is i + q2 if P ∈ T and i if P /∈ T . For a point
P of PG(3, q2) not of H(3, q2), P⊥ ∩H(3, q2) is an ovoid. Hence |P⊥ ∩ T | = i. �

Corollary 4.9. Let O be a (q+1)/2-ovoid of Q−(5, q). Let π be a plane of PG(5, q) meeting
Q−(5, q) in a non-degenerate conic C. Let T = C ∪ (π⊥ ∩Q−(5, q)). Then |T ∩ O| = q + 1.

Proof. By Payne [15, II.4(ii)], T is a 2-tight set. �

In the following Theorem, we use the fact that the collinearity graph of a generalised quad-
rangle of order (s, t) is a strongly regular graph and hence the adjacency matrix has exactly
three eigenvalues.
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Theorem 4.10. Let S be a classical generalised quadrangle. If there is an m-ovoid of S
and B is a set of (s + 1)i points of S such that |B ∩ O| = mi for all m-ovoids O of S, then
B is i-tight. If there is an i-tight set of S and B′ is a set of m(st + 1) points of S such that
|B′ ∩ T | = mi for all i-tight sets T of S, then B′ is an m-ovoid.

Proof. Since the automorphism group G of S has permutation rank three on the points
of S, the three eigenspaces corresponding to the adjacency matrix of the collinearity graph of
S are irreducible. The eigenspace W corresponding to the eigenvalue −(t+1) is the orthogonal
complement of the sum of the other two eigenspaces. Similarly, the eigenspace U corresponding
to the eigenvalue s− 1 is the orthogonal complement of the sum of the other two eigenspaces.

It follows from the details of the proof of Theorem 4.3 that a set O of points is an m-ovoid
if and only if χO − m

s+1
η is an eigenvector of the adjacency matrix with eigenvalue −(t + 1),

and that a set T of points is i-tight if and only if χT − i
st+1

η is an eigenvector of the adjacency
matrix with eigenvalue s − 1. Suppose there exists an m-ovoid of S and B is a set of (s + 1)i
points such that |B ∩O| = mi for all m-ovoids O of S. To show that B is i-tight, it is sufficient
to show that χB − i

st+1
η is orthogonal to W , since by hypothesis, |B| = (s + 1)i and hence

χB − i
st+1

η is orthogonal to the eigenspace corresponding to η. Since W is irreducible, this

condition is equivalent to χB− i
st+1

η being orthogonal to χO− m
s+1

η over all m-ovoids O; which
follows from our assumption.

The proof of the second part of this result is similar. �

A Cameron-Liebler line class of PG(3, q) with parameter x is a set L of lines of PG(3, q)
that shares precisely x lines with each spread of PG(3, q) (see [4]).

Corollary 4.11. A Cameron-Liebler line class L in PG(3, q) with parameter x gives an
x-tight set of Q(4, q).

Proof. First note that every spread of W (3, q) is a spread of PG(3, q). The set of lines of
L in W (3, q) meets each spread of W (3, q) in x lines and so is an x-tight set of Q(4, q). �

So by the above corollary, there arise (q2 + 1)/2-tight sets of Q(4, q) for q odd, by the
construction of [4].

5. m-ovoids in W (3, q), m even and q odd

In this section we will use ovoids of PG(3, q) to construct new m-ovoids of W (3, q), when q
is odd. This is despite the fact that there are no ovoids of W (3, q), q odd (see [18]). It is well
known that every ovoid of PG(3, q), q odd, is an elliptic quadric (see Barlotti [2] and Panella
[13]), although we require only the synthetic properties of such ovoids for our construction. We
now give a construction of an infinite family of 2-ovoids of W (3, q), for q odd.

Theorem 5.1. Let q be odd, let O be an ovoid of PG(3, q), let ρ be the associated polarity
of O, and let σ be a null polarity of PG(3, q) such that at each point P of O, there is precisely
one tangent line at P which is self-polar with respect to σ. Then Oρσ is an ovoid of PG(3, q)
disjoint from O, and O ∪Oρσ is a 2-ovoid of W (3, q).

Proof. Since the product of ρ and σ is a collineation, it follows that Oρσ is an ovoid of
PG(3, q). If X is a point of O, and ` is the unique tangent line at X which is self-polar with
respect to σ, then ` lies in Xρ and so Xρσ ∈ `σ = `. Since ` is the unique self-polar tangent
line on X in Xρ, we have that X is not the carrier of the pencil of self-polar (with respect to
σ) lines containing ` in Xρ. This carrier point is equal to Xρσ and hence X 6= Xρσ. Since ` is
tangent to O, we have that Xρσ /∈ O, and therefore our two ovoids O and Oρσ are disjoint.

Suppose ` is a line of W (3, q). We will show that ` meets O ∪Oρσ in precisely two points.
We have three cases:



TIGHT SETS AND m-OVOIDS OF GENERALISED QUADRANGLES 7

` is exterior to O: Then there are two distinct planes π1 and π2 of PG(3, q) which
intersect in ` and which are both tangent to O. Since Oρσ is an ovoid, we know that
` meets Oρσ in at most two points. Now πσ

1 and πσ
2 are two points on ` which lie on

Oρσ, and so ` meets Oρσ in precisely two points.
` is tangent to O: By the construction of the ovoid Oρσ, we have that ` meets it in

precisely one point, namely ((` ∩ O)ρ)σ. Therefore ` meets O ∪ Oρσ in precisely two
points.

` is secant to O: We show that ` is exterior to Oρσ. If we suppose the contrary, then
there is a point X of O such that ` is incident with Xρσ. By applying the polarity σ,
we find that ` is contained in Xρ, which is a contradiction as Xρ is the tangent plane
to X and ` is secant to O. Therefore ` meets O ∪Oρσ in precisely two points.

�

Such a null polarity σ satisfying the hypotheses of the above theorem exists, as we explain
below. Given an elliptic orthogonal polarity ρ and a null polarity σ of PG(3, q), with q odd,
either every tangent pencil of lines with respect to the underlying elliptic quadricO of ρ contains
a unique absolute line with respect to σ or exactly two tangent pencils of lines with respect to
O have every member absolute with respect to σ. In each case, there is a unique conjugacy
class of such polarities σ under the centraliser of ρ in PΓL(4, q).

By [17], the image of the tangent lines to O under the Klein correspondence is the unique
1-system of the Klein quadric, which can also be constructed by applying field reduction to
a conic C in PG(2, q2). Every hyperplane of PG(5, q) contains a unique line ` of PG(2, q2)
(after field reduction); if ` is tangent to C then the hyperplane is degenerate; if ` is secant to
C, then its image after field reduction is a hyperbolic 3-space, which lies on two degenerate
hyperplanes and q − 1 non-degenerate hyperplanes; if ` is external to C, then its image after
field reduction is an elliptic 3-space, which lies on q +1 non-degenerate hyperplanes. Moreover,
by Witt’s theorem, the stabiliser of C acts transitively on both the secant lines and the external
lines; and it follows easily that the stabiliser of the 1-system acts transitively on non-degenerate
hyperplanes containing the image after field reduction of a secant line and on non-degenerate
hyperplanes containing the image after field reduction of an external line. Applying the Klein
correspondence again shows that our claim above that there exists a null polarity σ such that
at each point P of O, there is precisely one tangent line at P which is self-polar with respect
to σ.

Corollary 5.2. For q odd, there is a partition of W (3, q) into 2-ovoids and hence for all
even m, there exist m-ovoids of W (3, q) (for some q).

Proof. Let f : GF(q4) × GF(q4) → GF(q4) be the Hermitian form f(x, y) = xyq2
, let

T : GF(q4) → GF(q) be the (relative) trace, so that T (x) = x+xq +xq2
+xq3

. Let γ ∈ GF(q4).

Then T (γf) is a symmetric bilinear form of minus type if γq2
= γ and is an alternating form if

γq2
= −γ. Consider the group C given by {x 7→ λx|λ2(q2+1) = 1} (note that the elements of C

are isometries with respect to the aforementioned symmetric bilinear and alternating forms).
Then C induces a cyclic subgroup G of PGL(4, q) of order q2 + 1, which by Ebert [11], has
q + 1 orbits on PG(3, q) which are all elliptic quadrics. Each orbit O corresponds to a choice

of γ with γq2
= γ (namely O is the set of singular points of T (γf)). Let ρ = ργ be the

corresponding polarity. Fix γ ∈ GF(q4) with γq2
= −γ and let σ be the corresponding (null)

polarity. Then G commutes with both ρ and σ and so with ρσ (since the elements of G are
projective isometries with respect to ρ and σ). Thus ρσ permutes the orbits of G. Hence, if we
apply the construction of Theorem 5.1 to an orbit O of G, then Oρσ is also an orbit of G. In
this way, the orbit partition of G induces a partition of W (3, q) into 2-ovoids. �
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6. Hemisystems of lines of Q(4, q)

In this section we give a construction of an infinite family of (q + 1)/2-covers of Q(4, q). A
(q + 1)/2-cover of the generalised quadrangle H(3, q2) was termed a hemisystem by Segre in
[16]. Since an m-cover of a generalised quadrangle gives rise to an m-ovoid of the point/line
dual generalised quadrangle, we will use the term hemisystem for both a (q + 1)/2-cover and
for a (q + 1)/2-ovoid, stating “of lines” or “of points” when the context is not clear. Here we
construct hemisystems of lines of Q(4, q), giving rise to hemisystems of points of W (3, q).

The construction involves sets of lines of PG(3, q) called reguli. That is, letR be a nonempty
set of mutually skew lines of PG(3, q) such that through each point of each line of R there is
a line meeting each line of R in exactly one point (such a line is called a transversal of R),
and such that through each point of each such transversal of R there is a line of R. Then R is
called a regulus. The set of all transversals of the regulus R forms a regulus, called the opposite
regulus, and any regulus necessarily consists of q + 1 lines.

Theorem 6.1. Let Π be a partition of the lines of Q(4, q) into reguli, which is closed under

the taking of opposite reguli. Then q is odd and 2(q2+1)/2 hemisystems of lines of Q(4, q) (and
so the same number of hemisystems of points of W (3, q)) arise, by taking one regulus from each
of the regulus-opposite regulus pairs in Π, and forming the union of these chosen reguli.

Proof. Consider the set of all lines through some point P of Q(4, q). Choosing one regulus
from each regulus-opposite regulus pair in Π clearly amounts to selecting exactly half of the
q + 1 lines through P , since for every line ` through P there exists a second line `′ through
P which lies in the opposite regulus to the unique regulus in Π containing `. The number of
reguli in Π is q2 + 1, and so the number of hemisystems of lines arising follows from the choice
of one regulus from each of the (q2 + 1)/2 regulus-opposite regulus pairs in Π. �

Below we give examples for which we get partitions Π of the lines of Q(4, q) into reguli, with
the desired properties stated in the theorem above. The critical observation to note is that the
points of a non-degenerate hyperbolic quadric Q+ in PG(3, q) are the points on some regulus
R. The lines of Q+ are then the lines of R together with the lines of the opposite regulus of R.

Example 1. Let ` be a line exterior to the parabolic quadric Q in PG(4, q), q odd. Let π
be the polar plane to `. Then π∩Q = C is a conic of π. Consider the set of hyperbolic quadrics
containing C together with the hyperbolic quadrics spanning a space containing `. Then the
set of reguli contained in the hyperbolic quadrics in this set forms a partition Π satisfying the
hypotheses of Theorem 6.1. To see this, let m be a line on Q. Then we have two cases; either
m meets π or is skew to π. In the former case, m lies in a hyperbolic quadric containing C and
not in a hyperbolic quadric spanning a space containing `, since the span of ` and m meets Q
in a cone. If m is skew to π, then the span of ` and m meets Q in a hyperbolic quadric.

For the following examples we require the concept of a flock. The study of flocks in their
more general setting of circle planes is a thriving field of research, with many varied geometric
structures closely associated to them, however here we need only the concept of a flock of the
hyperbolic quadric Q+ in PG(3, q), namely, a partition of the points of Q+ into pairwise disjoint
conics. We refer to the planes of PG(3, q) containing these conics as the planes of the flock.
In fact, flocks of the hyperbolic quadric have been classified, being just the linear flocks, the
Thas flocks (for odd q) and the exceptional flocks (for q ∈ {11, 23, 59}) (see [9] for a nice, short
proof).

Example 2. Let F be a flock of the hyperbolic quadric Q+, embedded as a hyperplane
section of the parabolic quadric Q in PG(4, q) such that all the polar lines to the planes of
F (with respect to Q) are external (so that q is congruent to 3 modulo 4 and F is not linear
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[1]). Let Σ be the space spanned by Q+. Then the set of hyperbolic quadrics spanning a space
that meets Σ in a plane of F , together with Q+, gives rise to a set of reguli Π satisfying the
hypotheses of the theorem. To see this, let m be a line of Q not in Σ. Then m meets Σ in a
point P of Q+, which lies in a unique plane π of F . The space spanned by π and m meets Q
in a hyperbolic quadric, since if it met in a cone, the vertex would be polar to π, contrary to
our hypothesis.

Example 3. Let F be a flock of the hyperbolic quadric Q+, embedded as a hyperplane
section of the parabolic quadric Q in PG(4, q) such that half of the polar lines to the planes
of F (with respect to Q) are external, and half are secant (so that either F is linear or q is
congruent to 1 modulo 4 and F is a Thas flock [1]). In particular, there is a common line `,
external to Q, on the planes of F with polar line secant. Let π` be the polar plane to ` (with
respect to Q), let C = π`∩Q and let Σ be the space spanned by Q+. Then the set of hyperbolic
quadrics spanning a space that meets Σ in a plane of F , together with Q+ and the hyperbolic
quadrics containing C, gives rise to a set of reguli Π satisfying the hypotheses of the theorem.
To see this, let m be a line not in Σ. Then m meets Σ in a point P of Q+, which lies in a unique
plane π of F . Now either the space spanned by π and m meets Q in a hyperbolic quadric, or
it meets it in a cone. In the latter case, the vertex of the cone would be polar to ` and so on
C, in which case m and π span a space meeting Q in a hyperbolic quadric containing C.

When the third construction is applied to a linear flock, the first construction arises. We
should also mention a connection here with a “symplectic polarity paired spread” in the work of
Cossidente, Culbert, Ebert, and Marino [6]. A symplectic polarity paired spread corresponds
to an ovoid of the Klein quadric under the Klein correspondence on which a reflection acts
fixed-point-freely. The polars of the lines spanned by the orbits are then a set of (q2 + 1)/2
hyperbolic quadric 3-spaces of the Q(4, q) on the axis of the reflection, pairwise meeting in
conic planes (and conversely). The reguli of these hyperbolic quadrics are then a partition of
the lines of Q(4, q) into regulus-opposite regulus pairs (and conversely).

7. m-ovoids of H(3, q2) and H(4, q2)

In H(3, q2), it is always possible to find a partition of the set of points into ovoids. Such a
partition is called a fan and a construction can be found in [3]. Hence, we have that m-ovoids
of H(3, q2) exist for all m with 0 ≤ m ≤ q2 + 1. It is well-known that there are no ovoids
of H(4, q2) (see [19, Section 4]). We now prove give a sufficient condition for an m-ovoid of
H(4, q2) to exist.

Theorem 7.1. Any m-ovoid of H(4, q2) has m >
√

q.

Proof. By Corollary 4.7, an m-ovoid of H(4, q2) gives a set of u = (q5 + 1)m points
of PG(4, q2) of type (h1, h2) with respect to hyperplanes where h1 = m(q3 + 1) − q3 and
h2 = m(q3 + 1). This gives a strongly regular graph (see [5]) on N = q10 vertices with valency
K = u(q2 − 1) with the number λ of vertices adjacent to a pair of adjacent vertices being
K2 + 3K − q2(w1 + w2) − Kq2(w1 + w2) + q4w1w2, where w1 = u − h1 and w2 = u − h2. So
λ = m2(q2 − 1)2 + 3m(q2 − 1)− q5. The condition λ ≥ 0 gives m >

√
q. �

8. Some more examples of intriguing sets

Here we give some examples of intriguing sets that (at the moment) do not belong to an
infinite family of examples. We use superscripts to denote multiplicity in our multisets.

Example 4 (Tight sets of W (3, 7)). Via its fully deleted permutation module, A7 acts as a
subgroup of PGO(5, 7) and so as a subgroup of PSp(4, 7). It has two orbits on points (see [12,
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Remarks 1.3]) of lengths {120, 280}, and hence each of these is intriguing. Thus the first orbit
is 15-tight. The subgroup A6 of A7 has four orbits on points of W (3, 7) of lengths {40, 1203},
with the orbit of length 40 being 5-tight, and one orbit of length 120 being 15-tight (and having
stabiliser A7). The union of the remaining 2 orbits is the set of points covered by a partial
spread of 30 lines of W (3, 7).

Example 5 (m-ovoids of Q(4, q)). A number of examples of m-ovoids of Q(4, q) have been
found with the use of a computer, for some small values of q.

For q = 5, let Q+ be a 3-dimensional hyperbolic quadric embedded in Q(4, 5) as a hyper-
plane section. Then the stabiliser in PGO(5, 5) of Q+ has two conjugacy classes of subgroups
isomorphic to GL(2, 3), exactly one of which has orbits on the points of Q(4, 5) of lengths
{8, 123, 16, 242, 48}. The union of a particular choice of these orbits of lengths 12, 16, 24 is a
2-ovoid of Q(4, 5).

For q = 7, let Q− be a 3-dimensional elliptic quadric embedded in Q(4, 7) as a hyperplane
section. Then the stabiliser in PGO(5, 7) of Q− has two conjugacy classes of subgroups of
order 96 with orbits on the points of Q(4, 7) of lengths {2, 6, 8, 244, 486}. These subgroups are
isomorphic to C24 o (C2×C2), and exactly one of them has orbits on lines of Q(4, 7) of lengths
{16, 482, 963}. The union of a particular choice of orbits on points of this subgroup of lengths
6, 24, 24, 48, 48 is a 3-ovoid of Q(4, 7).

For q = 9, let Q− be a 3-dimensional elliptic quadric embedded in Q(4, 9) as a hyperplane
section. Then the stabiliser in PΓO(5, 9) of Q− has two conjugacy classes of dihedral subgroups
of order 82, exactly one of which has orbits on the points of Q(4, 9) of lengths {4110, 825}. The
union of a particular choice of these orbits of lengths 41, 41, 41, 41, 82 is a 3-ovoid of Q(4, 9).
In fact, Q− is the union of two further orbits of lengths 41, 41, and is hence disjoint from the
3-ovoid, giving rise to a partition of Q(4, 9) into a 1-ovoid, 3-ovoid and 6-ovoid.

For q = 11, let Q− be a 3-dimensional elliptic quadric embedded in Q(4, 11) as a hyperplane
section. Then the normaliser of a Sylow 5-subgroup of the stabiliser in PGO(5, 11) of Q− has
two conjugacy classes of subgroups of order 240 with orbits on the points of Q(4, 11) of lengths
{2, 10, 12, 606, 1209}. These subgroups are isomorphic to C60 o (C2 × C2), and exactly one
of them has orbits on lines of Q(4, 11) of lengths {24, 1202, 2405}. The union of a particular
choice of orbits on points of this subgroup of lengths 10, 60, 60, 120, 120, 120, 120 is a 5-ovoid of
Q(4, 11).

Note that for Q(4, q), we have the existence for all q of 1-ovoids and their complement
q-ovoids, and as mentioned in Section 3, we have the existence for all odd q of (q +1)/2-ovoids.
Along with the few examples for small q given above, and their complements, we summarise
in the following table, for small q, the values of m for which m-ovoids of Q(4, q) are known to
exist.

q Known m Unknown m
3 1, 2, 3 –
5 1, 2, 3, 4, 5 –
7 1, 3, 4, 5, 7 2, 6
9 1, 3, 4, 5, 6, 7, 9 2, 8
11 1, 5, 6, 7, 11 2, 3, 4, 8, 9, 10

Table 1. m-ovoids of Q(4, q)

9. Open problems and conjectures

In this paper, we have constructed m-ovoids for W (3, q), q odd for all possible even integers
m, but for odd m, the situation is unclear. The dual of a hemisystem of lines of Q(4, 5) is a
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3-ovoid of W (3, 5), which we constructed in Section 6. We conjecture that 3-ovoids of W (3, q)
do not exist in larger characteristic.

Question 9.1. Is there a 3-ovoid of W (3, q) for q an odd prime power greater than 5?

Recall from Theorem 7.1, that an m-ovoid of H(4, q2) must have m >
√

q. However, it is
not known whether m-ovoids or m-covers exist in H(4, q2).

Question 9.2.

(a) Do there exist m-ovoids of H(4, q2) for
√

q < m < q2 + 1?
(b) Do there exist m-covers of H(4, q2) for 0 < m < q + 1?

We asked above whether 3-ovoids of W (3, q) exist, and we established in Section 5 that
m-ovoids of W (3, q), q odd, exist for all even m. Similarly, in Section 8, we saw that m-ovoids
of Q(4, q) exist for several small values of m. The problem below asks whether we can complete
the spectral problem of the existence of m-ovoids in these generalised quadrangles.

Question 9.3.

(a) For what values of m do m-ovoids of W (3, q) exist?
(b) For what values of m do m-ovoids of Q(4, q) exist?
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